Elettrologia

Corrente continua e alternata

Impedenza in corrente alternata

DETERMINAZIONE DELL'IMPEDENZA IN CORRENTE ALTERNATA IN UN CIRCUITO CON INDUTTORI E RESISTORI.

- Determinazione di modulo e fase della resistenza totale in funzione della frequenza con collegamento in serie.
- Determinazione di modulo e fase della resistenza totale in funzione della frequenza con collegamento in parallelo.

UE3050311

10/16 UD

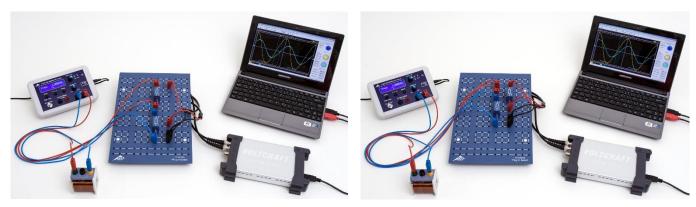


Fig. 1: Disposizione di misurazione per il collegamento in serie (destra) e per il collegamento in parallelo (sinistra).

BASI GENERALI

Ai circuiti a corrente alternata con induttori si assegna, per motivi di semplicità, una "resistenza complessa" o impedenza in quanto, in questo caso, oltre alle ampiezze di corrente e tensione, occorre considerare anche le relazioni di fase tra di esse. I collegamenti in serie e in parallelo di resistori e induttori sono quindi descrivibili facilmente. Anche la tensione e la corrente vengono considerate come grandezze complesse. Solo la loro parte reale è misurabile.

La reattanza induttiva di una bobina con induttanza L in un circuito a corrente alternata con frequenza f è

(1)
$$X_{L} = i \cdot X_{L0} = i \cdot \omega \cdot L$$

con $\omega = 2 \cdot \pi \cdot f$.

Pertanto, il collegamento in serie della bobina con una resistenza ohmica R ha l'impedenza totale

(2)
$$Z_s = i \cdot 2 \cdot \pi \cdot f \cdot L + R$$
,

mentre al collegamento in parallelo è possibile assegnare l'impedenza totale

(3)
$$Z_{P} = \frac{1}{\frac{1}{i \cdot 2 \cdot \pi \cdot f \cdot L} + \frac{1}{R}}.$$

Nella notazione comune

(4)
$$Z = Z_0 \cdot \exp(i \cdot \varphi)$$
.

risulta

(5)
$$Z_{\rm S} = Z_{\rm S0} \cdot \exp(i \cdot \phi_{\rm S}) = \sqrt{(2 \cdot \pi \cdot f \cdot L)^2 + R^2} \cdot \exp(i \cdot \phi_{\rm S})$$

con $\tan \phi_{\rm S} = \frac{2 \cdot \pi \cdot f \cdot L}{R}$

е

(6)
$$Z_{P} = Z_{P0} \cdot \exp(i \cdot \varphi_{P}) = \frac{2 \cdot \pi \cdot f \cdot L \cdot R}{\sqrt{(2 \cdot \pi \cdot f \cdot L)^{2} + R^{2}}} \cdot \exp(i \cdot \varphi_{P})$$

con
$$\tan \varphi_{P} = \frac{R}{2 \cdot \pi \cdot f \cdot I}$$

Applicando alla rispettiva resistenza totale $Z = Z_S$ o Z_P la tensione

(7)
$$U = U_0 \cdot \exp(i \cdot 2 \cdot \pi \cdot f \cdot t)$$

scorre la corrente

(8)
$$I = \frac{U_0}{Z_0} \cdot \exp(i \cdot (2 \cdot \pi \cdot f \cdot t - \varphi))$$
$$= I_0 \cdot \exp(i \cdot (2 \cdot \pi \cdot f \cdot t - \varphi))$$

Nell'esperimento, tale corrente viene ricavata dalla caduta di tensione $U_{\rm m}(t)$ per mezzo di una resistenza dinamica $R_{\rm m}$ (Fig. 2, 3) avente dimensioni tali per cui $U_{\rm m0} << U_0$, ovvero la tensione applicata, cade quasi completamente mediante $Z_{\rm S}$ o $Z_{\rm P}$. La corrente così determinata scorre sia attraverso $Z_{\rm S}$ sia attraverso $Z_{\rm P}$, poiché entrambe le resistenze sono collegate in serie a $R_{\rm m}$ (v. schema del circuito equivalente in Fig. 2, 3). Per $U_{\rm m}(t) = I(t) \cdot R_{\rm m}$, l'andamento temporale $U_{\rm m}(t)$ rispecchia pertanto l'andamento temporale I(t) della corrente.

ELENCO DEGLI STRUMENTI

 $\begin{array}{lll} \mbox{1 Scheda per componenti} & \mbox{1012902 (U33250)} \\ \mbox{1 Resistenza 1 } \Omega, \mbox{2 W, P2W19} & \mbox{1012903 (U333011)} \\ \mbox{1 Resistenza 100 } \Omega, \mbox{2 W, P2W19} & \mbox{1012910 (U333018)} \end{array}$

1 Generatore di funzione FG 100 @230V

1009957 (U8533600-230)

@115V 1009956 (U8533600-115)

1 Oscilloscopio PC 2x25 MHz 1020857 (U11830)

2 Cavo ad alta frequenza, connettore 4 mm / BNC 1002748 (U11257)

1 Set di 15 cavi per

esperimenti, 75 cm, 1 mm² 1002840 (U13800) 1 Bobina S con 800 spire 1001001 (U8498080) 1 Bobina S con 1200 spire 1001002 (U8498085)

MONTAGGIO ED ESECUZIONE

Collegamento in serie

- Realizzare la disposizione per la misurazione per il collegamento in serie (Fig. 1, sinistra) come mostrato nello schema elettrico (Fig. 2) con R_m =1 Ω, R =100 Ω e la bobina con N = 1200 spire / L = 23,0 mH.
- Collegare il segnale di uscita U_m(t) = I(t) · R_m al canale CH1 e il segnale d'ingresso U(t) al canale CH2 dell'oscilloscopio.
- Impostare sull'oscilloscopio PC i seguenti parametri iniziali:

 $\begin{array}{cccc} \text{Time/DIV} & 25 \ \mu\text{s} \\ \text{Volts/DIV CH1} & 2.00 \ \text{mV AC} \\ \text{Volts/DIV CH2} & 2.00 \ \text{V AC} \\ \text{Trigger Mode} & \text{Auto} \\ \text{Sweep} & \text{Edge} \\ \text{Source} & \text{CH2} \\ \text{Slope} & + \\ \text{Level} & 0.00 \ \mu\text{V} \\ \end{array}$

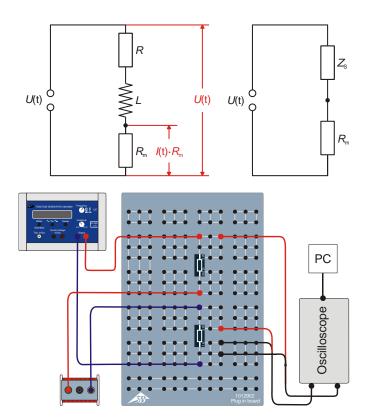
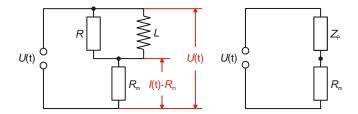



Fig. 2: Schema elettrico (in alto a sinistra), schema del circuito equivalente (in alto a destra) e rappresentazione schematica della struttura (in basso) relativi al collegamento in serie.

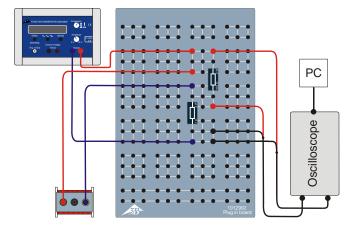


Fig. 3: Schema elettrico (in alto a sinistra), schema del circuito equivalente (in alto a destra) e rappresentazione schematica della struttura (in basso) relativi al collegamento in parallelo.

Nota

Nel corso della serie di misurazione, i parametri Time/DIV e Volts/DIV CH1 devono essere adattati.

- Selezionare sul generatore di funzione la forma del segnale sinusoidale e impostare l'ampiezza del segnale d'ingresso U₀ = 6 V. A tale scopo, impostare il regolatore di ampiezza in modo tale che il massimo e il minimo del segnale sinusoidale sul canale CH2 dell'oscilloscopio (a 2 V / quadretti) corrisponda a 3 quadretti.
- Sul generatore di funzione impostare in successione le frequenze 10000 Hz, 5000 Hz, 2000 Hz, 1000 Hz, 5000 Hz, 200 Hz e 50 Hz. Calcolare in base a T = 1 / f la durata del periodo corrispondente e riportare nella Tabella 1 insieme alle frequenze.
- Leggere l'ampiezza U_{m0} del segnale di uscita U_m(t) sull'oscilloscopio e riportare i valori nella Tabella 1.

- Leggere sull'oscilloscopio la differenza di tempo Δt dei passaggi attraverso lo zero dei segnali U(t) e U_m(t) e riportare i valori nella Tabella 1.
- Ripetere la misurazione per la bobina con N = 800 spire / L = 10,4 mH alle medesime frequenze e riportare tutti i valori nella Tabella 1.

Collegamento in parallelo

- Realizzare la disposizione per la misurazione per il collegamento in parallelo (Fig. 1, destra) come mostrato nello schema elettrico (Fig. 3) con R_m =1 Ω, R =100 Ω e la bobina con N = 1200 spire / L = 23,0 mH.
- Eseguire le misurazioni in maniera analoga al collegamento in serie. Selezionare sull'oscilloscopio PC i medesimi parametri iniziali, impostando però Volts/DIV CH1 a 20.0 mV CA.
- Riportare tutti i valori misurati nella Tabella 2.

ESEMPIO DI MISURAZIONE

Tab. 1: Valori misurati per il collegamento in serie.

f/Hz	T/ms	U _{m0} / mV		$\Delta t/\mu$ s	
		N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH	N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH
10000	0,1	4,1	7,8	21	21
5000	0,2	7,8	14,9	44	39
2000	0,5	18,7	31,6	92	72
1000	1,0	32,1	43,3	139	91
500	2,0	41,8	49,3	173	97
200	5,0	47,7	51,7	188	108
50	20,0	49,5	52,3	211	154

Tab. 2: Valori misurati per il collegamento in parallelo.

f/Hz	T/ms	U _{m0} / mV		Δt/ μs	
		N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH	N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH
10000	0,1	60,0	61,7	1,3	2,8
5000	0,2	60,3	62,6	4,4	8,3
2000	0,5	63,0	73,0	25,0	45,0
1000	1,0	76,2	104,5	89.3	130,6
500	2,0	106,0	170,9	238,2	278,6
200	5,0	200,0	316,0	599,4	545,6
50	20,0	323,6	431,5	883,8	614,8

ANALISI

- Calcolare il valore della resistenza induttiva in base a $X_{L0} = 2 \cdot \pi \cdot f \cdot L$ (v. equazione 1) e riportare il risultato nella Tabella 3.
- Dai risultati ottenuti per U_{m0} (Tab. 1, 2) e R_m (1 Ω) in base a I₀ = U_{m0} / R_m calcolare l'ampiezza della corrente e riportare i valori nella Tabella 3.
- Calcolare i valori Z_{0S} e Z_{0P} della resistenza totale in base a Z₀ = U₀ / I₀ (U₀ = 6 V) e riportare i valori nella Tabella 3.
- Dai valori della durata del periodo T e della differenza di tempo Δt (Tab. 1, 2) in base a $\varphi = 360^{\circ} \cdot \Delta t / T$ calcolare lo spostamento di fase e riportare i valori nella Tabella 3.
- Rappresentare graficamente i valori Z_{0S} e Z_{0P} della resistenza totale e gli spostamenti di fase φ per il collegamento in serie e in parallelo in funzione di X_{L0} (Fig. 4 7).

 Calcolare teoricamente i valori Z_{0S} e Z_{0P} della resistenza totale e gli spostamenti di fase φ in base alle equazioni (5) per il collegamento in serie e (6) per quello in parallelo

(9)
$$Z_{S0} = \sqrt{R^2 + X_{L0}^2}$$
, $\varphi = \arctan\left(\frac{X_{L0}}{R}\right)$

(10)
$$Z_{p_0} = \frac{1}{\sqrt{\frac{1}{R^2} + \frac{1}{X_{L0}^2}}}, \ \phi = \arctan\left(\frac{R}{X_{L0}}\right),$$


e rappresentare come linee tracciate nelle Figg. 4-7.

Conclusione

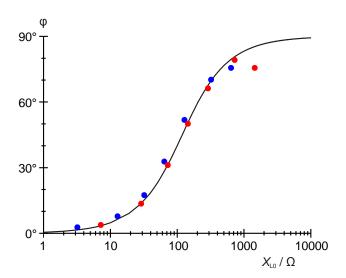
Con una reattanza induttiva grande, il collegamento in serie acquisisce il valore della reattanza induttiva e il collegamento in parallelo quello della resistenza ohmica. Lo spostamento di fase è compreso tra 0° e 90° ed è pari a 45° se la resistenza ohmica e induttiva sono uguali.

Tab. 3: Valori calcolati per X_{L0} della resistenza induttiva e valori determinati dalla misurazione per l'ampiezza I_0 della corrente, i valori Z_{0S} e Z_{0P} della resistenza totale nonché lo spostamento di fase ϕ in relazione al collegamento in serie e in parallelo.

		Collegamento in serie			Collegamento in parallelo		
N L/mH	X _{L0} / Ω	<i>I</i> ₀ / mA	Z _{S0} / Ω	φ	<i>I</i> ₀ / mA	$Z_{ extsf{P0}}$ / Ω	φ
1200	1445,1	4,1	1461,6	75,6°	60,0	100,1	4,7°
23,0	722,6	7,8	766,5	79,2°	60,3	99,4	7,9°
	289,0	18,7	320,7	66,2°	63,0	95,2	18,0°
	144,5	32,1	187,1	50,0°	76,2	78,8	32,1°
	72,3	41,8	143,5	31,1°	106,0	56,6	42,9°
	28,9	47,7	125,7	13,5°	200,0	30,1	43,2°
	7,2	49,5	121,3	3,8°	323,6	18,5	15,9°
800	653,5	7,8	766,5	75,6°	61,7	97,3	10,0°
10,4	326,7	15,0	402,9	70,2°	62,6	95,8	14,9°
	130,7	31,6	189,9	51,8°	72,9	82,3	32,4°
	65,3	43,3	138,4	32,8°	104,5	57,4	47,0°
	32,7	49,3	121,8	17,5°	170,9	35,1	50,1°
	13,1	51,7	116,0	7,8°	316,0	19,0	39,3°
	3,3	52,3	114,7	2,7°	431,5	14,0	11,1°

 Z_{p_0}/Ω 10000

1000


100

100

100 Z_{p_0}/Ω

Fig. 4: Resistenza totale con collegamento in serie per N = 800 ($^{\circ}$) e N = 1200 ($^{\circ}$) spire.

Fig. 6: Resistenza totale con collegamento in parallelo per N = 800 ($^{\circ}$) e N = 1200 ($^{\circ}$) spire.

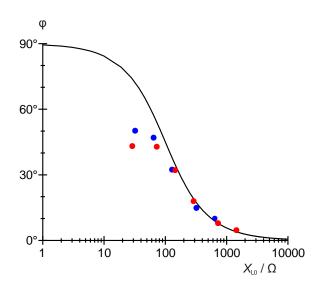


Fig. 5: Spostamento di fase con collegamento in serie per N = 800 ($^{\circ}$) e N = 1200 ($^{\circ}$) spire.

Fig. 7: Spostamento di fase con collegamento in parallelo per N = 800 ($^{\circ}$) e N = 1200 ($^{\circ}$) spire.