

Legge di Malus

CONFERMA DELLA LEGGE DI MALUS PER LUCE DI POLARIZZATA LINEARMENTE.

- Misurazione dell'intensità / della luce trasmessa attraverso il filtro di polarizzazione in funzione dell'angolo di rotazione dei filtri.
- · Conferma della legge di Malus.

UE4040100 11/23 UD

Fig. 1: Disposizione per la misurazione

BASI GENERALI

La luce è trasversalmente polarizzabile come onda trasversale, facendola passare ad esempio attraverso un filtro di polarizzazione. In un'onda luminosa polarizzata linearmente, il campo elettrico *E* e il campo magnetico *B* oscillano ciascuno su un piano fisso. La direzione di oscillazione del campo elettrico viene definita come direzione di polarizzazione.

Nell'esperimento la luce colpisce in modo consecutivo un polarizzatore e un analizzatore, ruotati l'uno rispetto all'altro dell'angolo ϕ . Il polarizzatore si lascia attraversare solo da una porzione linearmente polarizzata della luce. L'ampiezza del campo elettrico dell'onda trasmessa dal polarizzatore sia E_0 .

Nella direzione di polarizzazione dell'analizzatore tale componente oscilla con l'ampiezza

(1)
$$E = E_0 \cdot \cos \varphi$$
.

Solo questa frazione può attraversare l'analizzatore (Fig. 3).

L'intensità della luce corrisponde al quadrato dell'intensità del campo elettrico. Pertanto l'intensità dietro l'analizzatore è pari a

(2)
$$I = I_0 \cdot \cos^2 \varphi$$
,

se l_0 è l'intensità dietro il polarizzatore.

L'equazione (2) è conosciuta come Legge di Malus, e viene confermata nell'esperimento misurando l'intensità con un sensore di luce. In questa misurazione il valore di intensità misurato con ϕ = 90° corrisponde alla luce ambientale. Viene quindi sottratto dall'intensità misurata.

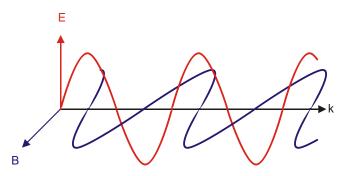


Fig. 2: Rappresentazione per la definizione della direzione di polarizzazione

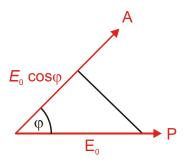


Fig. 3: Rappresentazione per il calcolo dell'intensità del campo magnetico dietro l'analizzatore

ELENCO DEGLI STRUMENTI

1	Banco ottico D, 50 cm		U10302	1002630
4	Cavaliere ottico D, 90/50		U103111	1002635
1	Lampada ottica con lampad			
			U21882	1020630
2	Filtro di polarizzazione su a	larizzazione su asta		1008668
1	Supporto per sensore di luce			1022269
1	Sensore di luce, tre range	UCN	//A-BT50i	1021502
1	Cavo del sensore	UCN	//A-BTsc1	1021514
1	Data logger			

- Data logger
- 1 Software

Ulteriori informazioni sulla misurazione digitale sono disponibili sul sito web dell'esperimento, nel webshop 3B.

MONTAGGIO E ESECUZIONE

 Realizzare la disposizione per la misurazione secondo Fig. 1.

Nota:

La posizione esatta dei due filtri di polarizzazione sul banco ottico è irrilevante ai fini del risultato delle misurazioni.

- Con l'ausilio del cavo del sensore, collegare il sensore di luce al data logger e avviare il software.
- Servendosi del contrassegno sul supporto girevole e sulla scala angolare, portare i due filtri di polarizzazione in posizione 0°.

Nota:

Il filtro di polarizzazione più vicino alla lampada ottica funge da polarizzatore, il filtro di polarizzazione più vicino al sensore di luce da analizzatore.

- Non modificare più l'impostazione del polarizzatore.
- Impostare l'analizzatore a passi da 10° ad angoli fino a 360° compreso e, per ogni angolo impostato, registrare l'intensità della luce punto per punto (Tab. 1).

ESEMPIO DI MISURAZIONE

Tab. 1: Intensità luminosa misurata I_m e intensità luminosa corretta sull'intensità della luce ambientale I per diversi angoli ϕ fra polarizzatore e analizzatore

φ	I _m / lux	$I = I_{\rm m} - I_{\rm m}(90^{\circ}) / \text{lux}$
0°	4,0440	3,6705
10°	3,9050	3,5315
20°	3,5500	3,1765
30°	3,1210	2,7475
40°	2,4720	2,0985
50°	1,7910	1,4175
60°	1,2080	0,8345
70°	0,7581	0,3846
80°	0,4502	0,0767
90°	0,3735	0,0000
100°	0,4906	0,1171
110°	0,8805	0,5070
120°	1,3440	0,9705
130°	1,9340	1,5605
140°	2,7330	2,3595
150°	3,3640	2,9905
160°	3,7710	3,3975
170°	4,0140	3,6405
180°	4,0320	3,6585
190°	3,8410	3,4675
200°	3,3710	2,9975
210°	2,7950	2,4215
220°	2,1880	1,8145
230°	1,5000	1,1265
240°	0,9986	0,6251
250°	0,5849	0,2114
260°	0,3802	0,0067
270°	0,3653	-0,0082
280°	0,5882	0,2147
290°	0,9939	0,6204
300°	1,5770	1,2035
310°	2,2280	1,8545
320°	2,8030	2,4295
330°	3,3850	3,0115
340°	3,7280	3,3545
350°	3,9810	3,6075
360°	4,0360	3,6625

ANALISI

L'estinzione dei filtri di polarizzazione è specificata con > 99,9% a λ = 450 – 750 nm. Il valore di intensità misurato con ϕ = 90° corrisponde con buona approssimazione alla luce ambientale.

- Sottrarre dalle intensità misurate I_m nella Tab. 1 per ogni angolo φ l'intensità di luce $I_m(\varphi = 90^\circ)$ (Tab. 1).
- Rappresentare graficamente in un diagramma l'intensità luminosa corretta sull'intensità della luce ambientale I in funzione dell'angolo φ (Fig. 4).

L'andamento della curva coincide con l'equazione (2).

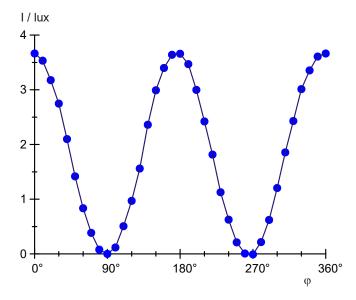


Fig. 4: Intensità di luce / in funzione dell'angolo φ tra polarizzatore e analizzatore

Dagli angoli φ con 0 ≤ φ ≤ 90°, calcolare i valori cos²(φ)
(Tab. 2) e riportare i valori corrispondenti dell'intensità di
luce / dalla Tab. 1 alla Tab. 2.

Tab. 2: Intensità luminosa corretta sull'intensità della luce ambientale I per diversi valori di $\cos^2(\varphi)$ con $0 \le \varphi \le 90^\circ$

φ	cos²(φ)	//lux
0°	1,00	3,6705
10°	0,97	3,5315
20°	0,88	3,1765
30°	0,75	2,7475
40°	0,59	2,0985
50°	0,41	1,4175
60°	0,25	0,8345
70°	0,12	0,3846
80°	0,03	0,0767
90°	0,00	0,0000

• Rappresentare graficamente in un diagramma l'intensità della luce \emph{l} in funzione di $\cos^2\phi$ (Fig. 5).

I valori di misurazione si trovano, come previsto dall'equazione (2), su una retta di origine con incremento l_0 .

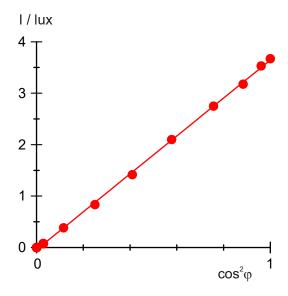


Fig. 5: Intensità di luce I in funzione di $cos^2\phi$